Struct indextree::NodeId

source ·
pub struct NodeId { /* private fields */ }
Expand description

A node identifier within a particular Arena.

This ID is used to get Node references from an Arena.

Implementations§

source§

impl NodeId

source

pub fn is_removed<T>(self, arena: &Arena<T>) -> bool

Return if the Node of NodeId point to is removed.

source

pub fn ancestors<T>(self, arena: &Arena<T>) -> Ancestors<'_, T>

Returns an iterator of IDs of this node and its ancestors.

Use .skip(1) or call .next() once on the iterator to skip the node itself.

Examples
// arena
// `-- 1                                                // #3
//     |-- 1_1                                          // #2
//     |   `-- 1_1_1 *                                  // #1
//     |       `-- 1_1_1_1
//     _-- 1_2
//     `-- 1_3

let mut iter = n1_1_1.ancestors(&arena);
assert_eq!(iter.next(), Some(n1_1_1));                  // #1
assert_eq!(iter.next(), Some(n1_1));                    // #2
assert_eq!(iter.next(), Some(n1));                      // #3
assert_eq!(iter.next(), None);
source

pub fn predecessors<T>(self, arena: &Arena<T>) -> Predecessors<'_, T>

Returns an iterator of IDs of this node and its predecessors.

Use .skip(1) or call .next() once on the iterator to skip the node itself.

Examples
// arena
// `-- 1                                                // #3
//     |-- 1_1                                          // #2
//     |   `-- 1_1_1 *                                  // #1
//     |       `-- 1_1_1_1
//     _-- 1_2
//     `-- 1_3

let mut iter = n1_1_1.predecessors(&arena);
assert_eq!(iter.next(), Some(n1_1_1));                  // #1
assert_eq!(iter.next(), Some(n1_1));                    // #2
assert_eq!(iter.next(), Some(n1));                      // #3
assert_eq!(iter.next(), None);
// arena
// `-- 1                                                // #4
//     |-- 1_1                                          // #3
//     |-- 1_2                                          // #2
//     |   `-- 1_2_1 *                                  // #1
//     |       `-- 1_2_1_1
//     _-- 1_3
//     `-- 1_4

let mut iter = n1_2_1.predecessors(&arena);
assert_eq!(iter.next(), Some(n1_2_1));                  // #1
assert_eq!(iter.next(), Some(n1_2));                    // #2
assert_eq!(iter.next(), Some(n1_1));                    // #3
assert_eq!(iter.next(), Some(n1));                      // #4
assert_eq!(iter.next(), None);
source

pub fn preceding_siblings<T>(self, arena: &Arena<T>) -> PrecedingSiblings<'_, T>

Returns an iterator of IDs of this node and the siblings before it.

Use .skip(1) or call .next() once on the iterator to skip the node itself.

Examples
// arena
// `-- 1
//     |-- 1_1                                          // #2
//     |   `-- 1_1_1
//     |-- 1_2                                          // #1
//     `-- 1_3

let mut iter = n1_2.preceding_siblings(&arena);
assert_eq!(iter.next(), Some(n1_2));                    // #1
assert_eq!(iter.next(), Some(n1_1));                    // #2
assert_eq!(iter.next(), None);
source

pub fn following_siblings<T>(self, arena: &Arena<T>) -> FollowingSiblings<'_, T>

Returns an iterator of IDs of this node and the siblings after it.

Use .skip(1) or call .next() once on the iterator to skip the node itself.

Examples
// arena
// `-- 1
//     |-- 1_1
//     |   `-- 1_1_1
//     |-- 1_2                                          // #1
//     `-- 1_3                                          // #2

let mut iter = n1_2.following_siblings(&arena);
assert_eq!(iter.next(), Some(n1_2));                    // #1
assert_eq!(iter.next(), Some(n1_3));                    // #2
assert_eq!(iter.next(), None);
source

pub fn children<T>(self, arena: &Arena<T>) -> Children<'_, T>

Returns an iterator of IDs of this node’s children.

Examples
// arena
// `-- 1
//     |-- 1_1                                          // #1
//     |   `-- 1_1_1
//     |-- 1_2                                          // #2
//     `-- 1_3                                          // #3

let mut iter = n1.children(&arena);
assert_eq!(iter.next(), Some(n1_1));                    // #1
assert_eq!(iter.next(), Some(n1_2));                    // #2
assert_eq!(iter.next(), Some(n1_3));                    // #3
assert_eq!(iter.next(), None);
source

pub fn reverse_children<T>(self, arena: &Arena<T>) -> ReverseChildren<'_, T>

Returns an iterator of IDs of this node’s children, in reverse order.

Examples
// arena
// `-- 1
//     |-- 1_1                                          // #3
//     |   `-- 1_1_1
//     |-- 1_2                                          // #2
//     `-- 1_3                                          // #1

let mut iter = n1.reverse_children(&arena);
assert_eq!(iter.next(), Some(n1_3));                    // #1
assert_eq!(iter.next(), Some(n1_2));                    // #2
assert_eq!(iter.next(), Some(n1_1));                    // #3
assert_eq!(iter.next(), None);
source

pub fn descendants<T>(self, arena: &Arena<T>) -> Descendants<'_, T>

An iterator of the IDs of a given node and its descendants, as a pre-order depth-first search where children are visited in insertion order.

i.e. node -> first child -> second child

Parent nodes appear before the descendants. Use .skip(1) or call .next() once on the iterator to skip the node itself.

Examples
// arena
// `-- 1                                                // #1
//     |-- 1_1                                          // #2
//     |   `-- 1_1_1                                    // #3
//     |       `-- 1_1_1_1                              // #4
//     |-- 1_2                                          // #5
//     `-- 1_3                                          // #6

let mut iter = n1.descendants(&arena);
assert_eq!(iter.next(), Some(n1));                      // #1
assert_eq!(iter.next(), Some(n1_1));                    // #2
assert_eq!(iter.next(), Some(n1_1_1));                  // #3
assert_eq!(iter.next(), Some(n1_1_1_1));                // #4
assert_eq!(iter.next(), Some(n1_2));                    // #5
assert_eq!(iter.next(), Some(n1_3));                    // #6
assert_eq!(iter.next(), None);
source

pub fn traverse<T>(self, arena: &Arena<T>) -> Traverse<'_, T>

An iterator of the “sides” of a node visited during a depth-first pre-order traversal, where node sides are visited start to end and children are visited in insertion order.

i.e. node.start -> first child -> second child -> node.end

Examples
// arena
// `-- 1                                                // #1, #10
//     |-- 1_1                                          // #2, #5
//     |   `-- 1_1_1                                    // #3, #4
//     |-- 1_2                                          // #6, #7
//     `-- 1_3                                          // #8, #9

let mut iter = n1.traverse(&arena);
assert_eq!(iter.next(), Some(NodeEdge::Start(n1)));     // #1
assert_eq!(iter.next(), Some(NodeEdge::Start(n1_1)));   // #2
assert_eq!(iter.next(), Some(NodeEdge::Start(n1_1_1))); // #3
assert_eq!(iter.next(), Some(NodeEdge::End(n1_1_1)));   // #4
assert_eq!(iter.next(), Some(NodeEdge::End(n1_1)));     // #5
assert_eq!(iter.next(), Some(NodeEdge::Start(n1_2)));   // #6
assert_eq!(iter.next(), Some(NodeEdge::End(n1_2)));     // #7
assert_eq!(iter.next(), Some(NodeEdge::Start(n1_3)));   // #8
assert_eq!(iter.next(), Some(NodeEdge::End(n1_3)));     // #9
assert_eq!(iter.next(), Some(NodeEdge::End(n1)));       // #10
assert_eq!(iter.next(), None);
source

pub fn reverse_traverse<T>(self, arena: &Arena<T>) -> ReverseTraverse<'_, T>

An iterator of the “sides” of a node visited during a depth-first pre-order traversal, where nodes are visited end to start and children are visited in reverse insertion order.

i.e. node.end -> second child -> first child -> node.start

Examples
// arena
// `-- 1                                                // #1, #10
//     |-- 1_1                                          // #6, #9
//     |   `-- 1_1_1                                    // #7, #8
//     |-- 1_2                                          // #4, #5
//     `-- 1_3                                          // #2, #3

let mut iter = n1.reverse_traverse(&arena);
assert_eq!(iter.next(), Some(NodeEdge::End(n1)));       // #1
assert_eq!(iter.next(), Some(NodeEdge::End(n1_3)));     // #2
assert_eq!(iter.next(), Some(NodeEdge::Start(n1_3)));   // #3
assert_eq!(iter.next(), Some(NodeEdge::End(n1_2)));     // #4
assert_eq!(iter.next(), Some(NodeEdge::Start(n1_2)));   // #5
assert_eq!(iter.next(), Some(NodeEdge::End(n1_1)));     // #6
assert_eq!(iter.next(), Some(NodeEdge::End(n1_1_1)));   // #7
assert_eq!(iter.next(), Some(NodeEdge::Start(n1_1_1))); // #8
assert_eq!(iter.next(), Some(NodeEdge::Start(n1_1)));   // #9
assert_eq!(iter.next(), Some(NodeEdge::Start(n1)));     // #10
assert_eq!(iter.next(), None);
// arena
// `-- 1                                                // #1, #10
//     |-- 1_1                                          // #6, #9
//     |   `-- 1_1_1                                    // #7, #8
//     |-- 1_2                                          // #4, #5
//     `-- 1_3                                          // #2, #3
let traverse = n1.traverse(&arena).collect::<Vec<_>>();
let mut reverse = n1.reverse_traverse(&arena).collect::<Vec<_>>();
reverse.reverse();
assert_eq!(traverse, reverse);
source

pub fn detach<T>(self, arena: &mut Arena<T>)

Detaches a node from its parent and siblings. Children are not affected.

Examples
// arena
// `-- (implicit)
//     `-- 1
//         |-- 1_1
//         |   `-- 1_1_1
//         |-- 1_2 *
//         `-- 1_3

n1_2.detach(&mut arena);
// arena
// |-- (implicit)
// |   `-- 1
// |       |-- 1_1
// |       |   `-- 1_1_1
// |       `-- 1_3
// `-- (implicit)
//     `-- 1_2 *

assert!(arena[n1_2].parent().is_none());
assert!(arena[n1_2].previous_sibling().is_none());
assert!(arena[n1_2].next_sibling().is_none());

let mut iter = n1.descendants(&arena);
assert_eq!(iter.next(), Some(n1));
assert_eq!(iter.next(), Some(n1_1));
assert_eq!(iter.next(), Some(n1_1_1));
assert_eq!(iter.next(), Some(n1_3));
assert_eq!(iter.next(), None);
source

pub fn append<T>(self, new_child: NodeId, arena: &mut Arena<T>)

Appends a new child to this node, after existing children.

Panics

Panics if:

  • the given new child is self, or
  • the given new child is an ancestor of self, or
  • the current node or the given new child was already removed.

To check if the node is removed or not, use Node::is_removed().

Examples
let mut arena = Arena::new();
let n1 = arena.new_node("1");
let n1_1 = arena.new_node("1_1");
n1.append(n1_1, &mut arena);
let n1_2 = arena.new_node("1_2");
n1.append(n1_2, &mut arena);
let n1_3 = arena.new_node("1_3");
n1.append(n1_3, &mut arena);

// arena
// `-- 1
//     |-- 1_1
//     |-- 1_2
//     `-- 1_3

let mut iter = n1.descendants(&arena);
assert_eq!(iter.next(), Some(n1));
assert_eq!(iter.next(), Some(n1_1));
assert_eq!(iter.next(), Some(n1_2));
assert_eq!(iter.next(), Some(n1_3));
assert_eq!(iter.next(), None);
source

pub fn checked_append<T>( self, new_child: NodeId, arena: &mut Arena<T> ) -> Result<(), NodeError>

Appends a new child to this node, after existing children.

Failures

To check if the node is removed or not, use Node::is_removed().

Examples
let mut arena = Arena::new();
let n1 = arena.new_node("1");
assert!(n1.checked_append(n1, &mut arena).is_err());

let n1_1 = arena.new_node("1_1");
assert!(n1.checked_append(n1_1, &mut arena).is_ok());
source

pub fn append_value<T>(self, value: T, arena: &mut Arena<T>) -> NodeId

Creates and appends a new node (from its associated data) as the last child. This method is a fast path for the common case of appending a new node. It is quicker than append.

Panics

Panics if the arena already has usize::max_value() nodes.

Examples
let mut arena = Arena::new();
let n1 = arena.new_node("1");
let n1_1 = n1.append_value("1_1", &mut arena);
let n1_1_1 = n1_1.append_value("1_1_1", &mut arena);
let n1_1_2 = n1_1.append_value("1_1_2", &mut arena);

// arena
// `-- 1
//     |-- 1_1
//  1_1_1 --|-- 1_1_2

let mut iter = n1.descendants(&arena);
assert_eq!(iter.next(), Some(n1));
assert_eq!(iter.next(), Some(n1_1));
assert_eq!(iter.next(), Some(n1_1_1));
assert_eq!(iter.next(), Some(n1_1_2));
assert_eq!(iter.next(), None);
source

pub fn prepend<T>(self, new_child: NodeId, arena: &mut Arena<T>)

Prepends a new child to this node, before existing children.

Panics

Panics if:

  • the given new child is self, or
  • the given new child is an ancestor of self, or
  • the current node or the given new child was already removed.

To check if the node is removed or not, use Node::is_removed().

Examples
let mut arena = Arena::new();
let n1 = arena.new_node("1");
let n1_1 = arena.new_node("1_1");
n1.prepend(n1_1, &mut arena);
let n1_2 = arena.new_node("1_2");
n1.prepend(n1_2, &mut arena);
let n1_3 = arena.new_node("1_3");
n1.prepend(n1_3, &mut arena);

// arena
// `-- 1
//     |-- 1_3
//     |-- 1_2
//     `-- 1_1

let mut iter = n1.descendants(&arena);
assert_eq!(iter.next(), Some(n1));
assert_eq!(iter.next(), Some(n1_3));
assert_eq!(iter.next(), Some(n1_2));
assert_eq!(iter.next(), Some(n1_1));
assert_eq!(iter.next(), None);
source

pub fn checked_prepend<T>( self, new_child: NodeId, arena: &mut Arena<T> ) -> Result<(), NodeError>

Prepends a new child to this node, before existing children.

Failures

To check if the node is removed or not, use Node::is_removed().

Examples
let mut arena = Arena::new();
let n1 = arena.new_node("1");
assert!(n1.checked_prepend(n1, &mut arena).is_err());

let n1_1 = arena.new_node("1_1");
assert!(n1.checked_prepend(n1_1, &mut arena).is_ok());
source

pub fn insert_after<T>(self, new_sibling: NodeId, arena: &mut Arena<T>)

Inserts a new sibling after this node.

Panics

Panics if:

  • the given new sibling is self, or
  • the current node or the given new sibling was already removed.

To check if the node is removed or not, use Node::is_removed().

Examples
// arena
// `-- 1
//     |-- 1_1 *
//     `-- 1_2

let n1_3 = arena.new_node("1_3");
n1_1.insert_after(n1_3, &mut arena);

// arena
// `-- 1
//     |-- 1_1
//     |-- 1_3 *
//     `-- 1_2

let mut iter = n1.descendants(&arena);
assert_eq!(iter.next(), Some(n1));
assert_eq!(iter.next(), Some(n1_1));
assert_eq!(iter.next(), Some(n1_3));
assert_eq!(iter.next(), Some(n1_2));
assert_eq!(iter.next(), None);
source

pub fn checked_insert_after<T>( self, new_sibling: NodeId, arena: &mut Arena<T> ) -> Result<(), NodeError>

Inserts a new sibling after this node.

Failures

To check if the node is removed or not, use Node::is_removed().

Examples
let mut arena = Arena::new();
let n1 = arena.new_node("1");
assert!(n1.checked_insert_after(n1, &mut arena).is_err());

let n2 = arena.new_node("2");
assert!(n1.checked_insert_after(n2, &mut arena).is_ok());
source

pub fn insert_before<T>(self, new_sibling: NodeId, arena: &mut Arena<T>)

Inserts a new sibling before this node.

Panics

Panics if:

  • the given new sibling is self, or
  • the current node or the given new sibling was already removed.

To check if the node is removed or not, use Node::is_removed().

Examples
let mut arena = Arena::new();
let n1 = arena.new_node("1");
let n1_1 = arena.new_node("1_1");
n1.append(n1_1, &mut arena);
let n1_2 = arena.new_node("1_2");
n1.append(n1_2, &mut arena);

// arena
// `-- 1
//     |-- 1_1
//     `-- 1_2 *

let n1_3 = arena.new_node("1_3");
n1_2.insert_before(n1_3, &mut arena);

// arena
// `-- 1
//     |-- 1_1
//     |-- 1_3 *
//     `-- 1_2

let mut iter = n1.descendants(&arena);
assert_eq!(iter.next(), Some(n1));
assert_eq!(iter.next(), Some(n1_1));
assert_eq!(iter.next(), Some(n1_3));
assert_eq!(iter.next(), Some(n1_2));
assert_eq!(iter.next(), None);
source

pub fn checked_insert_before<T>( self, new_sibling: NodeId, arena: &mut Arena<T> ) -> Result<(), NodeError>

Inserts a new sibling before this node.

Failures

To check if the node is removed or not, use Node::is_removed().

Examples
let mut arena = Arena::new();
let n1 = arena.new_node("1");
assert!(n1.checked_insert_before(n1, &mut arena).is_err());

let n2 = arena.new_node("2");
assert!(n1.checked_insert_before(n2, &mut arena).is_ok());
source

pub fn remove<T>(self, arena: &mut Arena<T>)

Removes a node from the arena.

Children of the removed node will be inserted to the place where the removed node was.

Please note that the node will not be removed from the internal arena storage, but marked as removed. Traversing the arena returns a plain iterator and contains removed elements too.

To check if the node is removed or not, use Node::is_removed().

Examples
// arena
// `-- 1
//     |-- 1_1
//     |-- 1_2 *
//     |   |-- 1_2_1
//     |   `-- 1_2_2
//     `-- 1_3

n1_2.remove(&mut arena);

// arena
// `-- 1
//     |-- 1_1
//     |-- 1_2_1
//     |-- 1_2_2
//     `-- 1_3

let mut iter = n1.descendants(&arena);
assert_eq!(iter.next(), Some(n1));
assert_eq!(iter.next(), Some(n1_1));
assert_eq!(iter.next(), Some(n1_2_1));
assert_eq!(iter.next(), Some(n1_2_2));
assert_eq!(iter.next(), Some(n1_3));
assert_eq!(iter.next(), None);
source

pub fn remove_subtree<T>(self, arena: &mut Arena<T>)

Removes a node and its descendants from the arena.

Examples
// arena
// `-- 1
//     |-- 1_1
//     |-- 1_2 *
//     |   |-- 1_2_1
//     |   `-- 1_2_2
//     `-- 1_3

n1_2.remove_subtree(&mut arena);

// arena
// `-- 1
//     |-- 1_1
//     `-- 1_3

let mut iter = n1.descendants(&arena);
assert_eq!(iter.next(), Some(n1));
assert_eq!(iter.next(), Some(n1_1));
assert_eq!(iter.next(), Some(n1_3));
assert_eq!(iter.next(), None);
source

pub fn debug_pretty_print<'a, T>( &'a self, arena: &'a Arena<T> ) -> DebugPrettyPrint<'a, T>

Returns the pretty-printable proxy object to the node and descendants.

(No) guarantees

This is provided mainly for debugging purpose. Node that the output format is not guaranteed to be stable, and any format changes won’t be considered as breaking changes.

Examples

//  arena
//  `-- "root"
//      |-- "0"
//      |   |-- "0\n0"
//      |   `-- "0\n1"
//      |-- "1"
//      `-- "2"
//          `-- "2\n0"
//              `-- "2\n0\n0"

let printable = root.debug_pretty_print(&arena);

let expected_debug = r#""root"
|-- "0"
|   |-- "0\n0"
|   `-- "0\n1"
|-- "1"
`-- "2"
    `-- "2\n0"
        `-- "2\n0\n0""#;
assert_eq!(format!("{:?}", printable), expected_debug);

let expected_display = r#"root
|-- 0
|   |-- 0
|   |   0
|   `-- 0
|       1
|-- 1
`-- 2
    `-- 2
        0
        `-- 2
            0
            0"#;
assert_eq!(printable.to_string(), expected_display);

Alternate styles ({:#?} and {:#}) are also supported.


//  arena
//  `-- Ok(42)
//      `-- Err("err")

let printable = root.debug_pretty_print(&arena);

let expected_debug = r#"Ok(42)
`-- Err("err")"#;
assert_eq!(format!("{:?}", printable), expected_debug);

let expected_debug_alternate = r#"Ok(
    42,
)
`-- Err(
        "err",
    )"#;
assert_eq!(format!("{:#?}", printable), expected_debug_alternate);

Trait Implementations§

source§

impl Clone for NodeId

source§

fn clone(&self) -> NodeId

Returns a copy of the value. Read more
1.0.0 · source§

fn clone_from(&mut self, source: &Self)

Performs copy-assignment from source. Read more
source§

impl Debug for NodeId

source§

fn fmt(&self, f: &mut Formatter<'_>) -> Result

Formats the value using the given formatter. Read more
source§

impl Display for NodeId

source§

fn fmt(&self, f: &mut Formatter<'_>) -> Result

Formats the value using the given formatter. Read more
source§

impl Hash for NodeId

source§

fn hash<__H: Hasher>(&self, state: &mut __H)

Feeds this value into the given Hasher. Read more
1.3.0 · source§

fn hash_slice<H>(data: &[Self], state: &mut H)
where H: Hasher, Self: Sized,

Feeds a slice of this type into the given Hasher. Read more
source§

impl<T> Index<NodeId> for Arena<T>

§

type Output = Node<T>

The returned type after indexing.
source§

fn index(&self, node: NodeId) -> &Node<T>

Performs the indexing (container[index]) operation. Read more
source§

impl<T> IndexMut<NodeId> for Arena<T>

source§

fn index_mut(&mut self, node: NodeId) -> &mut Node<T>

Performs the mutable indexing (container[index]) operation. Read more
source§

impl Into<NonZeroUsize> for NodeId

source§

fn into(self) -> NonZeroUsize

Converts this type into the (usually inferred) input type.
source§

impl Into<usize> for NodeId

source§

fn into(self) -> usize

Converts this type into the (usually inferred) input type.
source§

impl Ord for NodeId

source§

fn cmp(&self, other: &NodeId) -> Ordering

This method returns an Ordering between self and other. Read more
1.21.0 · source§

fn max(self, other: Self) -> Self
where Self: Sized,

Compares and returns the maximum of two values. Read more
1.21.0 · source§

fn min(self, other: Self) -> Self
where Self: Sized,

Compares and returns the minimum of two values. Read more
1.50.0 · source§

fn clamp(self, min: Self, max: Self) -> Self
where Self: Sized + PartialOrd,

Restrict a value to a certain interval. Read more
source§

impl PartialEq for NodeId

source§

fn eq(&self, other: &NodeId) -> bool

This method tests for self and other values to be equal, and is used by ==.
1.0.0 · source§

fn ne(&self, other: &Rhs) -> bool

This method tests for !=. The default implementation is almost always sufficient, and should not be overridden without very good reason.
source§

impl PartialOrd for NodeId

source§

fn partial_cmp(&self, other: &NodeId) -> Option<Ordering>

This method returns an ordering between self and other values if one exists. Read more
1.0.0 · source§

fn lt(&self, other: &Rhs) -> bool

This method tests less than (for self and other) and is used by the < operator. Read more
1.0.0 · source§

fn le(&self, other: &Rhs) -> bool

This method tests less than or equal to (for self and other) and is used by the <= operator. Read more
1.0.0 · source§

fn gt(&self, other: &Rhs) -> bool

This method tests greater than (for self and other) and is used by the > operator. Read more
1.0.0 · source§

fn ge(&self, other: &Rhs) -> bool

This method tests greater than or equal to (for self and other) and is used by the >= operator. Read more
source§

impl Copy for NodeId

source§

impl Eq for NodeId

source§

impl StructuralEq for NodeId

source§

impl StructuralPartialEq for NodeId

Auto Trait Implementations§

Blanket Implementations§

source§

impl<T> Any for T
where T: 'static + ?Sized,

source§

fn type_id(&self) -> TypeId

Gets the TypeId of self. Read more
source§

impl<T> Borrow<T> for T
where T: ?Sized,

source§

fn borrow(&self) -> &T

Immutably borrows from an owned value. Read more
source§

impl<T> BorrowMut<T> for T
where T: ?Sized,

source§

fn borrow_mut(&mut self) -> &mut T

Mutably borrows from an owned value. Read more
source§

impl<T> From<T> for T

source§

fn from(t: T) -> T

Returns the argument unchanged.

source§

impl<T, U> Into<U> for T
where U: From<T>,

source§

fn into(self) -> U

Calls U::from(self).

That is, this conversion is whatever the implementation of From<T> for U chooses to do.

source§

impl<T> ToOwned for T
where T: Clone,

§

type Owned = T

The resulting type after obtaining ownership.
source§

fn to_owned(&self) -> T

Creates owned data from borrowed data, usually by cloning. Read more
source§

fn clone_into(&self, target: &mut T)

Uses borrowed data to replace owned data, usually by cloning. Read more
source§

impl<T> ToString for T
where T: Display + ?Sized,

source§

default fn to_string(&self) -> String

Converts the given value to a String. Read more
source§

impl<T, U> TryFrom<U> for T
where U: Into<T>,

§

type Error = Infallible

The type returned in the event of a conversion error.
source§

fn try_from(value: U) -> Result<T, <T as TryFrom<U>>::Error>

Performs the conversion.
source§

impl<T, U> TryInto<U> for T
where U: TryFrom<T>,

§

type Error = <U as TryFrom<T>>::Error

The type returned in the event of a conversion error.
source§

fn try_into(self) -> Result<U, <U as TryFrom<T>>::Error>

Performs the conversion.