indextree_macros/lib.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309
use either::Either;
use itertools::Itertools;
use proc_macro2::TokenStream;
use quote::{quote, ToTokens};
use strum::EnumDiscriminants;
use syn::{
braced,
parse::{Parse, ParseStream},
parse_macro_input,
punctuated::Punctuated,
Expr, Token,
};
#[derive(Clone, Debug)]
struct IndexNode {
node: Expr,
children: Punctuated<Self, Token![,]>,
}
impl Parse for IndexNode {
fn parse(input: ParseStream) -> syn::Result<Self> {
let node = input.parse::<Expr>()?;
if input.parse::<Token![=>]>().is_err() {
return Ok(IndexNode {
node,
children: Punctuated::new(),
});
}
let children_stream;
braced!(children_stream in input);
let children = children_stream.parse_terminated(Self::parse, Token![,])?;
Ok(IndexNode { node, children })
}
}
#[derive(Clone, Debug)]
struct IndexTree {
arena: Expr,
root_node: Expr,
nodes: Punctuated<IndexNode, Token![,]>,
}
impl Parse for IndexTree {
fn parse(input: ParseStream) -> syn::Result<Self> {
let arena = input.parse::<Expr>()?;
input.parse::<Token![,]>()?;
let root_node = input.parse::<Expr>()?;
let nodes = if input.parse::<Token![=>]>().is_ok() {
let braced_nodes;
braced!(braced_nodes in input);
braced_nodes.parse_terminated(IndexNode::parse, Token![,])?
} else {
Punctuated::new()
};
let _ = input.parse::<Token![,]>();
Ok(IndexTree {
arena,
root_node,
nodes,
})
}
}
#[derive(Clone, EnumDiscriminants, Debug)]
#[strum_discriminants(name(ActionKind))]
enum Action {
Append(Expr),
Parent,
Nest,
}
impl ToTokens for Action {
fn to_tokens(&self, tokens: &mut TokenStream) {
tokens.extend(self.to_stream())
}
}
impl Action {
fn to_stream(&self) -> TokenStream {
match self {
Action::Append(expr) => quote! {
__last = __node.append_value(#expr, __arena);
},
Action::Parent => quote! {
let __temp = ::indextree::Arena::get(__arena, __node);
let __temp = ::core::option::Option::unwrap(__temp);
let __temp = ::indextree::Node::parent(__temp);
let __temp = ::core::option::Option::unwrap(__temp);
__node = __temp;
},
Action::Nest => quote! {
__node = __last;
},
}
}
}
#[derive(Clone, Debug)]
struct NestingLevelMarker;
#[derive(Clone, Debug)]
struct ActionStream {
count: usize,
kind: ActionKind,
stream: TokenStream,
}
impl ToTokens for ActionStream {
fn to_tokens(&self, tokens: &mut TokenStream) {
tokens.extend(self.stream.clone());
}
}
/// Construct a tree for a given arena.
///
/// This macro creates a tree in an [`Arena`] with a pre-defined layout. If the root node is of
/// type [`NodeId`], then that [`NodeId`] is used for the root node, but if it's any other type,
/// then it creates a new root node on-the-fly. The macro returns [`NodeId`] of the root node.
///
/// # Examples
///
/// ```
/// # use indextree::{Arena, macros::tree};
/// # let mut arena = Arena::new();
/// let root_node = arena.new_node("root node");
/// tree!(
/// &mut arena,
/// root_node => {
/// "1",
/// "2" => {
/// "2_1" => { "2_1_1" },
/// "2_2",
/// },
/// "3",
/// }
/// );
///
/// let automagical_root_node = tree!(
/// &mut arena,
/// "root node, but automagically created" => {
/// "1",
/// "2" => {
/// "2_1" => { "2_1_1" },
/// "2_2",
/// },
/// "3",
/// }
/// );
/// ```
///
/// Note that you can anchor the root node in the macro to any node at any nesting. So you can take
/// an already existing node of a tree and attach another tree to it:
/// ```
/// # use indextree::{Arena, macros::tree};
/// # let mut arena = Arena::new();
/// let root_node = tree!(
/// &mut arena,
/// "root node" => {
/// "1",
/// "2",
/// "3",
/// }
/// );
///
/// let node_1 = arena.get(root_node).unwrap().first_child().unwrap();
/// let node_2 = arena.get(node_1).unwrap().next_sibling().unwrap();
/// tree!(
/// &mut arena,
/// node_2 => {
/// "2_1" => { "2_1_1" },
/// "2_2",
/// }
/// );
/// ```
///
/// It is also possible to create an empty root_node, although, I'm not sure why you'd want to do
/// that.
/// ```
/// # use indextree::{Arena, macros::tree};
/// # let mut arena = Arena::new();
/// let root_node = tree!(
/// &mut arena,
/// "my root node",
/// );
/// ```
/// Empty nodes can also be defined as `=> {}`
/// ```
/// # use indextree::{Arena, macros::tree};
/// # let mut arena = Arena::new();
/// let root_node = tree!(
/// &mut arena,
/// "my root node" => {},
/// );
/// ```
///
/// [`Arena`]: https://docs.rs/indextree/latest/indextree/struct.Arena.html
/// [`NodeId`]: https://docs.rs/indextree/latest/indextree/struct.NodeId.html
#[proc_macro]
pub fn tree(input: proc_macro::TokenStream) -> proc_macro::TokenStream {
let IndexTree {
arena,
root_node,
nodes,
} = parse_macro_input!(input as IndexTree);
let mut stack: Vec<Either<_, NestingLevelMarker>> =
nodes.into_iter().map(Either::Left).rev().collect();
let mut action_buffer: Vec<Action> = Vec::new();
while let Some(item) = stack.pop() {
let Either::Left(IndexNode { node, children }) = item else {
action_buffer.push(Action::Parent);
continue;
};
action_buffer.push(Action::Append(node));
if children.is_empty() {
continue;
}
// going one level deeper
stack.push(Either::Right(NestingLevelMarker));
action_buffer.push(Action::Nest);
stack.extend(children.into_iter().map(Either::Left).rev());
}
let mut actions: Vec<ActionStream> = action_buffer
.into_iter()
.map(|action| ActionStream {
count: 1,
kind: ActionKind::from(&action),
stream: action.to_stream(),
})
.coalesce(|action1, action2| {
if action1.kind != action2.kind {
return Err((action1, action2));
}
let count = action1.count + action2.count;
let kind = action1.kind;
let mut stream = action1.stream;
stream.extend(action2.stream);
Ok(ActionStream {
count,
kind,
stream,
})
})
.collect();
let is_last_action_useless = actions
.last()
.map(|last| last.kind == ActionKind::Parent)
.unwrap_or(false);
if is_last_action_useless {
actions.pop();
}
// HACK(alexmozaidze): Due to the fact that specialization is unstable, we must resort to
// autoref specialization trick.
// https://github.com/dtolnay/case-studies/blob/master/autoref-specialization/README.md
quote! {{
let mut __arena: &mut ::indextree::Arena<_> = #arena;
#[repr(transparent)]
struct __Wrapping<__T>(::core::mem::ManuallyDrop<__T>);
trait __ToNodeId<__T> {
fn __to_node_id(&mut self, __arena: &mut ::indextree::Arena<__T>) -> ::indextree::NodeId;
}
trait __NodeIdToNodeId<__T> {
fn __to_node_id(&mut self, __arena: &mut ::indextree::Arena<__T>) -> ::indextree::NodeId;
}
impl<__T> __NodeIdToNodeId<__T> for __Wrapping<::indextree::NodeId> {
fn __to_node_id(&mut self, __arena: &mut ::indextree::Arena<__T>) -> ::indextree::NodeId {
unsafe { ::core::mem::ManuallyDrop::take(&mut self.0) }
}
}
impl<__T> __ToNodeId<__T> for &mut __Wrapping<__T> {
fn __to_node_id(&mut self, __arena: &mut ::indextree::Arena<__T>) -> ::indextree::NodeId {
::indextree::Arena::new_node(__arena, unsafe { ::core::mem::ManuallyDrop::take(&mut self.0) })
}
}
let __root_node: ::indextree::NodeId = {
let mut __root_node = __Wrapping(::core::mem::ManuallyDrop::new(#root_node));
(&mut __root_node).__to_node_id(__arena)
};
let mut __node: ::indextree::NodeId = __root_node;
let mut __last: ::indextree::NodeId;
#(#actions)*
__root_node
}}.into()
}