1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
//! Iterators.

#![allow(clippy::redundant_closure_call)]

use crate::{Arena, Node, NodeId};

macro_rules! impl_node_iterator {
    ($name:ident, $next:expr) => {
        impl<'a, T> Iterator for $name<'a, T> {
            type Item = NodeId;

            fn next(&mut self) -> Option<NodeId> {
                let node = self.node.take()?;
                self.node = $next(&self.arena[node]);
                Some(node)
            }
        }

        impl<'a, T> core::iter::FusedIterator for $name<'a, T> {}
    };
}

#[derive(Clone)]
/// An iterator of the IDs of the ancestors of a given node.
pub struct Ancestors<'a, T> {
    arena: &'a Arena<T>,
    node: Option<NodeId>,
}
impl_node_iterator!(Ancestors, |node: &Node<T>| node.parent);

impl<'a, T> Ancestors<'a, T> {
    pub(crate) fn new(arena: &'a Arena<T>, current: NodeId) -> Self {
        Self {
            arena,
            node: Some(current),
        }
    }
}

#[derive(Clone)]
/// An iterator of the IDs of the predecessors of a given node.
pub struct Predecessors<'a, T> {
    arena: &'a Arena<T>,
    node: Option<NodeId>,
}
impl_node_iterator!(Predecessors, |node: &Node<T>| {
    node.previous_sibling.or(node.parent)
});

impl<'a, T> Predecessors<'a, T> {
    pub(crate) fn new(arena: &'a Arena<T>, current: NodeId) -> Self {
        Self {
            arena,
            node: Some(current),
        }
    }
}

#[derive(Clone)]
/// An iterator of the IDs of the siblings before a given node.
pub struct PrecedingSiblings<'a, T> {
    arena: &'a Arena<T>,
    node: Option<NodeId>,
}
impl_node_iterator!(PrecedingSiblings, |node: &Node<T>| node.previous_sibling);

impl<'a, T> PrecedingSiblings<'a, T> {
    pub(crate) fn new(arena: &'a Arena<T>, current: NodeId) -> Self {
        Self {
            arena,
            node: Some(current),
        }
    }
}

#[derive(Clone)]
/// An iterator of the IDs of the siblings after a given node.
pub struct FollowingSiblings<'a, T> {
    arena: &'a Arena<T>,
    node: Option<NodeId>,
}
impl_node_iterator!(FollowingSiblings, |node: &Node<T>| node.next_sibling);

impl<'a, T> FollowingSiblings<'a, T> {
    pub(crate) fn new(arena: &'a Arena<T>, current: NodeId) -> Self {
        Self {
            arena,
            node: Some(current),
        }
    }
}

#[derive(Clone)]
/// An iterator of the IDs of the children of a given node, in insertion order.
pub struct Children<'a, T> {
    arena: &'a Arena<T>,
    node: Option<NodeId>,
}
impl_node_iterator!(Children, |node: &Node<T>| node.next_sibling);

impl<'a, T> Children<'a, T> {
    pub(crate) fn new(arena: &'a Arena<T>, current: NodeId) -> Self {
        Self {
            arena,
            node: arena[current].first_child,
        }
    }
}

#[derive(Clone)]
/// An iterator of the IDs of the children of a given node, in reverse insertion order.
pub struct ReverseChildren<'a, T> {
    arena: &'a Arena<T>,
    node: Option<NodeId>,
}
impl_node_iterator!(ReverseChildren, |node: &Node<T>| node.previous_sibling);

impl<'a, T> ReverseChildren<'a, T> {
    pub(crate) fn new(arena: &'a Arena<T>, current: NodeId) -> Self {
        Self {
            arena,
            node: arena[current].last_child,
        }
    }
}

#[derive(Clone)]
/// An iterator of the IDs of a given node and its descendants, as a pre-order depth-first search where children are visited in insertion order.
///
/// i.e. node -> first child -> second child
pub struct Descendants<'a, T>(Traverse<'a, T>);

impl<'a, T> Descendants<'a, T> {
    pub(crate) fn new(arena: &'a Arena<T>, current: NodeId) -> Self {
        Self(Traverse::new(arena, current))
    }
}

impl<'a, T> Iterator for Descendants<'a, T> {
    type Item = NodeId;

    fn next(&mut self) -> Option<NodeId> {
        self.0.find_map(|edge| match edge {
            NodeEdge::Start(node) => Some(node),
            NodeEdge::End(_) => None,
        })
    }
}

impl<'a, T> core::iter::FusedIterator for Descendants<'a, T> {}

#[derive(Debug, Clone, Copy, PartialEq, Eq, Hash)]
/// Indicator if the node is at a start or endpoint of the tree
pub enum NodeEdge {
    /// Indicates that start of a node that has children.
    ///
    /// Yielded by `Traverse::next()` before the node’s descendants. In HTML or
    /// XML, this corresponds to an opening tag like `<div>`.
    Start(NodeId),

    /// Indicates that end of a node that has children.
    ///
    /// Yielded by `Traverse::next()` after the node’s descendants. In HTML or
    /// XML, this corresponds to a closing tag like `</div>`
    End(NodeId),
}

impl NodeEdge {
    /// Returns the next `NodeEdge` to be returned by forward depth-first traversal.
    ///
    /// # Examples
    ///
    /// ```
    /// # use indextree::{Arena, NodeEdge};
    /// # let mut arena = Arena::new();
    /// # let n1 = arena.new_node("1");
    /// # let n1_1 = arena.new_node("1_1");
    /// # n1.append(n1_1, &mut arena);
    /// # let n1_1_1 = arena.new_node("1_1_1");
    /// # n1_1.append(n1_1_1, &mut arena);
    /// # let n1_2 = arena.new_node("1_2");
    /// # n1.append(n1_2, &mut arena);
    /// # let n1_3 = arena.new_node("1_3");
    /// # n1.append(n1_3, &mut arena);
    /// #
    /// // arena
    /// // `-- 1
    /// //     |-- 1_1
    /// //     |   `-- 1_1_1
    /// //     |-- 1_2
    /// //     `-- 1_3
    ///
    /// let steps = std::iter::successors(
    ///     Some(NodeEdge::Start(n1)),
    ///     |current| current.next_traverse(&arena)
    /// )
    ///     .collect::<Vec<_>>();
    /// let traversed_by_iter = n1.traverse(&arena).collect::<Vec<_>>();
    /// assert_eq!(
    ///     steps,
    ///     traversed_by_iter,
    ///     "repeated `.next_traverse()`s emit same events as `NodeId::traverse()` iterator"
    /// );
    /// ```
    ///
    /// `NodeEdge` itself does not borrow an arena, so you can modify the nodes
    /// being traversed.
    ///
    /// ```
    /// # use indextree::{Arena, NodeEdge};
    /// # let mut arena = Arena::new();
    /// # let n1 = arena.new_node("1".to_owned());
    /// # let n1_1 = arena.new_node("1_1".to_owned());
    /// # n1.append(n1_1, &mut arena);
    /// # let n1_1_1 = arena.new_node("1_1_1".to_owned());
    /// # n1_1.append(n1_1_1, &mut arena);
    /// # let n1_2 = arena.new_node("1_2".to_owned());
    /// # n1.append(n1_2, &mut arena);
    /// # let n1_3 = arena.new_node("1_3".to_owned());
    /// # n1.append(n1_3, &mut arena);
    /// #
    /// // arena: Arena<String>
    /// // `-- 1
    /// //     |-- 1_1
    /// //     |   `-- 1_1_1
    /// //     |-- 1_2
    /// //     `-- 1_3
    ///
    /// assert_eq!(*arena[n1].get(), "1");
    /// assert_eq!(*arena[n1_1_1].get(), "1_1_1");
    /// assert_eq!(*arena[n1_3].get(), "1_3");
    ///
    /// let mut next = Some(NodeEdge::Start(n1));
    /// let mut count = 0;
    /// while let Some(current) = next {
    ///     next = current.next_traverse(&arena);
    ///     let current = match current {
    ///         NodeEdge::Start(id) => id,
    ///         NodeEdge::End(_) => continue,
    ///     };
    ///
    ///     arena[current].get_mut().push_str(&format!(" (count={})", count));
    ///     count += 1;
    /// }
    ///
    /// assert_eq!(*arena[n1].get(), "1 (count=0)");
    /// assert_eq!(*arena[n1_1_1].get(), "1_1_1 (count=2)");
    /// assert_eq!(*arena[n1_3].get(), "1_3 (count=4)");
    /// ```
    #[must_use]
    pub fn next_traverse<T>(self, arena: &Arena<T>) -> Option<Self> {
        match self {
            NodeEdge::Start(node) => match arena[node].first_child {
                Some(first_child) => Some(NodeEdge::Start(first_child)),
                None => Some(NodeEdge::End(node)),
            },
            NodeEdge::End(node) => {
                let node = &arena[node];
                match node.next_sibling {
                    Some(next_sibling) => Some(NodeEdge::Start(next_sibling)),
                    // `node.parent()` here can only be `None` if the tree has
                    // been modified during iteration, but silently stoping
                    // iteration seems a more sensible behavior than panicking.
                    None => node.parent.map(NodeEdge::End),
                }
            }
        }
    }

    /// Returns the previous `NodeEdge` to be returned by forward depth-first traversal.
    ///
    /// # Examples
    ///
    /// ```
    /// # use indextree::{Arena, NodeEdge};
    /// # let mut arena = Arena::new();
    /// # let n1 = arena.new_node("1");
    /// # let n1_1 = arena.new_node("1_1");
    /// # n1.append(n1_1, &mut arena);
    /// # let n1_1_1 = arena.new_node("1_1_1");
    /// # n1_1.append(n1_1_1, &mut arena);
    /// # let n1_2 = arena.new_node("1_2");
    /// # n1.append(n1_2, &mut arena);
    /// # let n1_3 = arena.new_node("1_3");
    /// # n1.append(n1_3, &mut arena);
    /// #
    /// // arena
    /// // `-- 1
    /// //     |-- 1_1
    /// //     |   `-- 1_1_1
    /// //     |-- 1_2
    /// //     `-- 1_3
    ///
    /// let steps = std::iter::successors(
    ///     Some(NodeEdge::End(n1)),
    ///     |current| current.prev_traverse(&arena)
    /// )
    ///     .collect::<Vec<_>>();
    /// let traversed_by_iter = n1.reverse_traverse(&arena).collect::<Vec<_>>();
    /// assert_eq!(
    ///     steps,
    ///     traversed_by_iter,
    ///     "repeated `.prev_traverse()`s emit same events as \
    ///      `NodeId::reverse_traverse()` iterator"
    /// );
    /// ```
    ///
    /// `NodeEdge` itself does not borrow an arena, so you can modify the nodes
    /// being traversed.
    ///
    /// ```
    /// use indextree::{Arena, NodeEdge};
    ///
    /// # let mut arena = Arena::new();
    /// # let n1 = arena.new_node("1".to_owned());
    /// # let n1_1 = arena.new_node("1_1".to_owned());
    /// # n1.append(n1_1, &mut arena);
    /// # let n1_1_1 = arena.new_node("1_1_1".to_owned());
    /// # n1_1.append(n1_1_1, &mut arena);
    /// # let n1_2 = arena.new_node("1_2".to_owned());
    /// # n1.append(n1_2, &mut arena);
    /// # let n1_3 = arena.new_node("1_3".to_owned());
    /// # n1.append(n1_3, &mut arena);
    /// #
    /// // arena: Arena<String>
    /// // `-- 1
    /// //     |-- 1_1
    /// //     |   `-- 1_1_1
    /// //     |-- 1_2
    /// //     `-- 1_3
    ///
    /// assert_eq!(*arena[n1_3].get(), "1_3");
    /// assert_eq!(*arena[n1_1_1].get(), "1_1_1");
    /// assert_eq!(*arena[n1].get(), "1");
    ///
    /// let mut next = Some(NodeEdge::End(n1_3));
    /// let mut count = 0;
    /// while let Some(current) = next {
    ///     next = current.prev_traverse(&arena);
    ///     let current = match current {
    ///         NodeEdge::Start(id) => id,
    ///         NodeEdge::End(_) => continue,
    ///     };
    ///
    ///     arena[current].get_mut().push_str(&format!(" (count={})", count));
    ///     count += 1;
    /// }
    ///
    /// assert_eq!(*arena[n1_3].get(), "1_3 (count=0)");
    /// assert_eq!(*arena[n1_1_1].get(), "1_1_1 (count=2)");
    /// assert_eq!(*arena[n1].get(), "1 (count=4)");
    /// ```
    #[must_use]
    pub fn prev_traverse<T>(self, arena: &Arena<T>) -> Option<Self> {
        match self {
            NodeEdge::End(node) => match arena[node].last_child {
                Some(last_child) => Some(NodeEdge::End(last_child)),
                None => Some(NodeEdge::Start(node)),
            },
            NodeEdge::Start(node) => {
                let node = &arena[node];
                match node.previous_sibling {
                    Some(previous_sibling) => Some(NodeEdge::End(previous_sibling)),
                    // `node.parent()` here can only be `None` if the tree has
                    // been modified during iteration, but silently stopping
                    // iteration seems a more sensible behavior than panicking.
                    None => node.parent.map(NodeEdge::Start),
                }
            }
        }
    }
}

#[derive(Clone)]
/// An iterator of the "sides" of a node visited during a depth-first pre-order traversal,
/// where node sides are visited start to end and children are visited in insertion order.
///
/// i.e. node.start -> first child -> second child -> node.end
pub struct Traverse<'a, T> {
    arena: &'a Arena<T>,
    root: NodeId,
    next: Option<NodeEdge>,
}

impl<'a, T> Traverse<'a, T> {
    pub(crate) fn new(arena: &'a Arena<T>, current: NodeId) -> Self {
        Self {
            arena,
            root: current,
            next: Some(NodeEdge::Start(current)),
        }
    }

    /// Calculates the next node.
    fn next_of_next(&self, next: NodeEdge) -> Option<NodeEdge> {
        if next == NodeEdge::End(self.root) {
            return None;
        }
        next.next_traverse(self.arena)
    }

    /// Returns a reference to the arena.
    #[inline]
    #[must_use]
    pub(crate) fn arena(&self) -> &Arena<T> {
        self.arena
    }
}

impl<'a, T> Iterator for Traverse<'a, T> {
    type Item = NodeEdge;

    fn next(&mut self) -> Option<NodeEdge> {
        let next = self.next.take()?;
        self.next = self.next_of_next(next);
        Some(next)
    }
}

impl<'a, T> core::iter::FusedIterator for Traverse<'a, T> {}

#[derive(Clone)]
/// An iterator of the "sides" of a node visited during a depth-first pre-order traversal,
/// where nodes are visited end to start and children are visited in reverse insertion order.
///
/// i.e. node.end -> second child -> first child -> node.start
pub struct ReverseTraverse<'a, T> {
    arena: &'a Arena<T>,
    root: NodeId,
    next: Option<NodeEdge>,
}

impl<'a, T> ReverseTraverse<'a, T> {
    pub(crate) fn new(arena: &'a Arena<T>, current: NodeId) -> Self {
        Self {
            arena,
            root: current,
            next: Some(NodeEdge::End(current)),
        }
    }

    /// Calculates the next node.
    fn next_of_next(&self, next: NodeEdge) -> Option<NodeEdge> {
        if next == NodeEdge::Start(self.root) {
            return None;
        }
        next.prev_traverse(self.arena)
    }
}

impl<'a, T> Iterator for ReverseTraverse<'a, T> {
    type Item = NodeEdge;

    fn next(&mut self) -> Option<NodeEdge> {
        let next = self.next.take()?;
        self.next = self.next_of_next(next);
        Some(next)
    }
}

impl<'a, T> core::iter::FusedIterator for ReverseTraverse<'a, T> {}